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ABSTRACT. We study vantage-point trees constructed using an independent sample from the
uniform distribution on a fixed convex body K in (Rd ,∥ · ∥), where ∥ · ∥ is an arbitrary homo-
geneous norm on Rd . We prove that a sequence of sets, associated with the left boundary of a
vantage-point tree, forms a recurrent Harris chain on the space of convex bodies in (Rd ,∥ · ∥).
The limiting object is a ball polyhedron, that is, an a.s. finite intersection of closed balls in
(Rd ,∥ ·∥) of possibly different radii. As a consequence, we derive a limit theorem for the length
of the leftmost path of a vantage-point tree.

1. INTRODUCTION

Let (M,ρ) be a metric space. The notation Br(x) is used for the closed ball of radius r
centered at x, that is, Br(x) := {y ∈ M : ρ(x,y) ≤ r}. A vantage-point tree (in short, vp tree)
VP(X ) of a (finite or infinite) sequence X := (x1,x2, . . .)⊂ M with a threshold function r is a
labeled rooted subtree of a full binary tree constructed using the following rules.

• Each vertex of VP(X ) is a pair (x,rx), where x ∈ X is called a vantage-point and its
label rx is a positive real number called the threshold of x.

• VP(x1) is the unique tree with a single vertex (the root) (x1,rx1), where rx1 is a given
positive number, the threshold of the root.

• For a finite set (x1, . . . ,xk)⊂ M, the tree VP(x1, . . . ,xk,x) is constructed by adding a new
vertex (x,rx) to VP(x1, . . . ,xk) by recursively comparing x with x1, . . . ,xk, starting from
its root x1 and according to the procedure: if x ∈ Bry(y), where y is one of the points
x1, . . . ,xk, then x goes to the left subtree of (y,ry); and to the right subtree if x /∈ Bry(y).
If x ∈ Bry(y) and the left subtree of y is empty, then (x,rx) is attached as the left child to
(y,ry), whereas if x /∈ Bry(y) and the right subtree of y is empty, then (x,rx) is attached
as the right child to (y,ry). Finally, the threshold value rx is determined according to the
chosen rule.

Vantage-point trees were introduced in [13] as a data structure for efficient storing and re-
trieving spatial data, particularly, for fast execution of nearest-neighbor search queries in a
metric space [6, 10]. There are several close relatives of vp trees such as kd-trees [2, 9] and ball
trees [11].
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The choice of a threshold rx for a newly added vertex (x,rx) is a part of specification of a
vantage-point tree and usually depends on the position of a vertex in the already constructed tree
to which (x,rx) is attached. This choice is usually dictated by the requirement that VP(x1, . . . ,xk)
remains balanced when k → ∞. In many cases and, in particular, if the points in X are ‘uni-
formly’ scattered in some compact subset of M, it is natural to assume that rx decreases expo-
nentially fast as a function of the depth of x, that is,

(1) rx = c · τdepth(x)+1,

for some τ ∈ (0,1) and c > 0, where depth(x) is the distance from x to the root. Without loss
of generality we set c := 1. The results for a general c can be obtained by scaling the metric, so
that all results hold with the unit ball replaced by the ball of radius c. Of course, the shape of
the vp tree heavily depends on the choice of τ .

Assume that M is a convex body K (a convex compact set with non-empty interior) in Eu-
clidean space Rd endowed with an arbitrary (homogeneous and convex) norm ∥ · ∥, which is
used to construct balls appearing in the definition of the vp tree. In this paper we focus on a
particular class of vp trees constructed using an independent sample from the uniform distribu-
tion on K. Assume that X := (U1,U2, . . .) for a sequence (U j) j∈N of independent copies of a
random vector U with distribution

(2) P{U ∈ ·}= λ ( · ∩K)

λ (K)
,

where λ is the Lebesgue measure in Rd .
Recapitulating, in this paper we will consider an infinite vp tree VP(U1, . . . ,Un, . . .) con-

structed from independent identically distributed random vectors having uniform distribution (2)
and with the threshold function given by (1). It is natural to call such a tree random vp tree with
an exponential threshold function. To the best of out knowledge, [4] is the only paper devoted
to the probabilistic analysis of such trees, which restricts the study to vp trees in K = [−1,1]d

with the ℓ∞-norm.
As we see in Section 2 below, the analysis of the leftmost path in a random vp tree with an

exponential threshold function leads to a set-valued recursion of the form

(3) Xh+1 = τ
−1(Xh −uh)∩B1, h ∈ N0,

where uh is a point uniformly sampled from Xh and B1 := B1(0) and N0 := {0,1,2, . . .}. We
study the sequence (Xh)h∈N0 , which forms a set-valued Markov chain on the family Kd of
convex bodies. The importance of the sets Xh lies in the fact that they describe the basins of
attraction for the successive vertices which can be attached to the leftmost path. Our main result
shows that Xh has a limit distribution and the limiting random set is obtained as the intersection
of a random number m of unit balls scaled by 1,τ−1, . . . ,τ−m+1. To the best of our knowledge,
set-valued Markov chains have not been systematically investigated in the literature and we are
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aware only of several ‘genuinely’ set-valued Markov chains1 studied before, namely, continued
fractions on convex sets [8] and diminishing process of Balint Toth [7].

The paper is organized as follows. In Section 2 we discuss in details the origins of Markov
chain (3) in relation to random vp trees with exponential threshold functions and formulate the
main result as Theorem 2.2. The proof of the main result is presented in Section 3. In Section 4
we apply Theorem 2.2 to derive a limit theorem for the length of the leftmost path of a vp tree
with an exponential threshold function.

2. CONVERGENCE OF RANDOM SETS ASSOCIATED WITH VP TREES

There is a natural sequence of nested sets associated with the left boundary of an arbitrary vp
tree VP(x1,x2, . . .), that is, with the unique path which starts at the root and on each step follows
the left subtree. Let (xlh,rxlh

) be the vertex of depth h ∈ N0 in the aforementioned unique path.
Thus, xl0 = x1 is the root, xl1 is the unique left child of the root, xl2 is the unique left child of xl1 ,
and so on. Define the sequence of nested convex closed sets (Ih)h∈N0 recursively by the rule

(4) Ih+1 := Ih ∩Brxlh
(xlh), h ∈ N0,

with I0 := K being a fixed convex body, see Section 1. Recall that Br(x) denotes the ball of
radius r in the chosen norm on Rd centered at x. In the following we write Br for the ball Br(0)
centered at the origin.

Thus, Ih+1 is a subset of K such that a point landing there goes to the left subtree of (xlh,rxlh
).

By the construction we know that xlh is the unique left child of xlh−1 , and thereupon xlh ∈ Ih.
Specifying (4) to the random vp tree with an exponential threshold function, we see that

rxlh
= τh+1, h ∈ N0. Furthermore, it is clear that the conditional distribution of xlh , given Ih, is

uniform in Ih ⊂ K. Thus, for an arbitrary Borel set A, we have

(5) P{xlh ∈ A | Ih}=
λ (A∩ Ih)

λ (Ih)
, h ∈ N0.

Let U be a random mapping which assigns to a (deterministic) convex body L∈Kd a random
point U (L) ∈ L with the uniform distribution on L, that is,

P{U (L) ∈ ·}= λ (·∩L)
λ (L)

, L ∈ Kd.

We specify only the marginal distributions of the random field (U (L))L∈Kd , since only they are
of importance for us.

Given a sequence (Uk)k∈N0 of independent copies of the mapping U we define a Markov
chain (Jh,yh) ∈ Kd ×Rd , h ∈ N0, as follows: (J0,y0) = (K,U0(K)) and

(Jh,yh) 7−→
(

Jh ∩Bτh+1(yh),Uh
(
Jh ∩Bτh+1(yh)

))
=: (Jh+1,yh+1), h ∈ N0.

The following is a simple observation.

1We took some liberty to use adjective ‘genuinely’ to outline set-valued Markov chains whose analysis cannot
be easily reduced to the study of Markov chains with finite-dimensional state spaces.
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Proposition 2.1. Let (Ih,xlh)h∈N0 , I0 = K, be a sequence of sets (4) constructed from a ran-
dom vp tree. Then the sequences (Ih,xlh)h∈N0 and (Jh,yh)h∈N0 have the same distribution. For
every h ∈ N0, yh = Uh(Jh), where Uh and Jh are independent. In particular, the conditional
distribution of yh, given Jh, is uniform on Jh.

We are interested in the asymptotic shape of the random set Jh, as h → ∞. To this end, we
first consider a shifted version of the sequence (Jh) by setting J̃h := Jh−yh−1 for h ∈N0, where
y−1 := 0. By induction it can be readily checked that

(6) J̃h+1 =
(
J̃h − (yh − yh−1)

)
∩Bτh+1 for h ∈ N0.

Furthermore, for all Borel A ⊆ Rd ,

P{yh − yh−1 ∈ A | J̃0, . . . , J̃h}= P{Uh(Jh)− yh−1 ∈ A | J̃0, . . . , J̃h}

= P{Uh(Jh − yh−1) ∈ A | J̃0, . . . , J̃h}= P{Uh(J̃h) ∈ A | J̃h},

where we have used that U (K) + x d
= U (K + x), for every x ∈ Rd and also independence

between Uh and (J̃0, . . . , J̃h). Thus, (J̃h)h∈N0 is a Markov chain with the transition mechanism

(7) J̃0 = K, J̃h 7−→
(
J̃h −Uh(J̃h)

)
∩Bτh+1 = J̃h+1, h ∈ N0.

The advantage of this chain in comparison to the chain (Jh,yh)h∈N0 is that P{0 ∈ J̃h ⊂ Bτh}=
1, for all h ∈N. Since τh → 0 as h → ∞, the later implies that J̃h a.s. converges in the Hausdorff
metric on Kd to the set {0} exponentially fast. Our main result shows that the sequence of
normalized sets (τ−hJ̃h) converges to a non-degenerate distribution. Let K

(o)
d be the family of

convex bodies which contain the origin in the interior.

Theorem 2.2. Assume that (1) holds for some τ ∈ (0, 1) and c > 0. Let (J̃h)h∈N0 be a Markov
chain on Kd given by (7), where K ∈ Kd is an arbitrary convex body. Then there exists a
non-degenerate random compact set J∞ with values in K

(o)
d and such that

τ
−hJ̃h

d−→ J∞ as h → ∞

in Kd endowed with the Hausdorff metric. The limiting random compact convex set J∞ is an
a.s. finite intersection of translated and scaled by τ− j, j = 0, . . . ,m, copies of the ball B1, where
m is random. The distribution of J∞ does not depend on K.

Remark 2.3. Passing from random sets to their equivalence classes up to translations, we see
that the equivalence class of τ−hJh converges to the equivalence class of J∞.

Put Xh := τ−hJ̃h, h ∈ N0. Then (Xh)h∈N0 is a time-homogeneous Markov chain with the
transition mechanism

X0 := K, Xh 7−→ τ
−1(Xh −Uh(Xh)

)
∩B1 = Xh+1, h ∈ N0.

Thus, we recover recursion (3) from the introduction. Note that, by the construction, P{Xh ∈
Kd}= 1 for all h ∈ N0.
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3. PROOF OF THEOREM 2.2

The main idea of the proof lies in showing that the chain (Xh)h∈N0 visits the state B1 infinitely
often with independent identically distributed integrable times between consecutive visits. This
implies that the chain is positive recurrent and, thus, possesses a stationary distribution.

Throughout the proof we denote the Minkowski sum of two sets in Rd by

A1 +A2 = {x+ y : x ∈ A1,y ∈ A2}
and the Minkowski difference by

A1 ⊖A2 := {x ∈ Rd : x+A2 ⊂ A1}.
In particular, for closed balls Br(x) and BR(y) in Rd with R ≥ r ≥ 0, we have BR(y)⊖Br(x) =
BR−r(y− x). Furthermore, A⊖Br ̸=∅ means that A contains a translation of Br.

Recall, see Section 6.8 in [5], that a Markov chain (ξn)n∈N0 on a state space S is a Harris
chain if there exist two sets A,A′ ∈ S , a function q such that q(x,y)≥ ε > 0 for x ∈ A, y ∈ A′,
and a probability measure ρ concentrated on A′ so that

(i) for all z ∈ S , we have P{κA < ∞ |ξ0 = z}> 0, where κA := inf{n ≥ 0 : ξn ∈ A};
(ii) for x ∈ A and C ⊂ A′, P{ξn+1 ∈C |ξn = x} ≥

∫
C q(x,y)ρ(dy).

Lemma 3.1. The sequence (Xh)h∈N0 is a Harris chain on the state space Kd with A = A′ =
{Bq}, ρ being a degenerate probability measure concentrated at B1 and q being a constant
(1− τ)d > 0.

Proof. Note that

(8) P{Xh+1 = B1 |Xh = B1}= P{U (B1) ∈ B1−τ}=
λ (B1−τ)

λ (B1)
= (1− τ)d > 0.

Thus, part (ii) of the definition holds with ρ({B1}) = 1 and q(x,y) = (1− τ)d > 0. To check
part (i) we argue as follows. For every K ∈Kd there exist ε > 0 and x ∈ K such that Bε(x)⊂ K.
Note that

P{X1 ⊃ Bε/2 |X0 = K} ≥ P{U1(K) ∈ Bε/2(x)}> 0.
Thus, without loss of generality we may assume that the chain starts at X0 which contains a
small ball around the origin. We now show that with positive probability the chain reaches the
state B1. Intuitively this occurs whenever we have a relatively long series of consecutive events
“a uniform point chosen from Xh falls near the origin”. In this case Xh+1 contains a scaled copy
of Xh with the scale factor greater than 1. To make this intuition precise, note that, for R ∈ (0,1),

Xh ⊃ BR and Uh(Xh) ∈ BR(1−τ)/2

together imply
Xh+1 ⊃ τ

−1(BR ⊖BR(1−τ)/2)∩B1 = BR1,

where R1 := (R(1+ τ)/(2τ))∧ 1 > R. Thus, given that Xh contains BR there is an event of
positive probability {Uh(Xh) ∈ BR(1−τ)/2} such that Xh+1 contains either B1 (and in this case
it is equal to B1) or contains a scaled copy of BR with the scale factor (1+ τ)/(2τ) > 1. This
clearly implies (i). □
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Remark 3.2. The argument used in the proof of Lemma 3.1 is a simplified version of a much
stronger claim that the chain which starts at B1 returns to this state with probability one (not just
with positive probability), and, furthermore, the mean time between the visits has finite mean.
This claim (confirmed in Proposition 3.4) is illustrated on Figure 1 for τ = 4/7. On each step a
uniform random point inside a current set Xh is picked, the set is translated by the chosen vector,
scaled by τ−1 > 1 and intersected with the unit disk. The chain returns to the state B1 on Step
15.

The following observation is crucial for the proof that (Xh) is positive recurrent. It tells us
that with probability one Xh contains a ball of a small (but fixed) radius, for all sufficiently large
h ∈ N0.

Proposition 3.3. Let K ∈ Kd be an arbitrary compact convex body which contains a ball of
radius ε > 0. Put r := min(ε,1)2−d−1. Then

(9) P{Xh ⊖Br ̸=∅ for all h ∈ N0|X0 = K}= 1.

Proof. Without loss of generality assume that K contains the origin in its interior and Bε ⊂ K.
Moreover, starting with X1, we can assume that K ⊂B1. For notational simplicity put Uk(Xk) =:
uk, k ∈ N0, so, let us repeat again,

X0 = K, Xh+1 = τ
−1(Xh −uh)∩B1, h ∈ N0.

By induction,

(10) Xh =

(
τ
−hK −

h

∑
j=1

τ
− juh− j

)⋂(h−1⋂
k=0

(
Bτ−k −

k

∑
j=1

τ
− juh− j

))
=: K̂(h)∩ B̂(h), h ∈N0.

Note that if the upper index is strictly smaller than the lower one, then intersections are set to
be equal to Rd and sums are set to vanish. We show that

(11) (K̂(h)∩ B̂(h))⊖Br ̸=∅, h ≥ d.

Fix any h ≥ d. Upon multiplying by τh, this is equivalent to

(12) ∅ ̸=

(
K ⊖Bτhr −

h−1

∑
j=0

τ
ju j

)⋂(h−1⋂
k=0

(
Bτh−k−τhr −

h−1

∑
j=h−k

τ
ju j

))
=:

h⋂
k=0

(
L(k)− vh,k

)
,

where L(0) := K ⊖Bτhr and L(k) := Bτk−τhr for k = 1, . . . ,h, and

vh,k :=
h−1

∑
j=k

τ
ju j, k = 0, . . . ,h.

Since uh ∈ Xh ⊂ τ−hK −∑
h
j=1 τ− juh− j and τhuh + vh,0 = vh+1,0, we have

(13) vh,0 ∈ K ⊂ B1, h ∈ N.
Furthermore,

τ
huh ∈ (L(k)− vh,k)⊂ (Bτk − vh,k),
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FIGURE 1. First twenty values of the chain (Xh)h∈N0 in R2 with the Euclidean
norm and τ = 4/7. The chain starts at B1 and returns to this state on Step 15.
Each value of the chain is a finite intersection of translated and scaled unit balls.

so that ∥vh,k∥ ≤ τk for all k ≤ h. Furthermore,

(14) ∥vh,k − vh,l∥= ∥vl,k∥ ≤ τ
k, 1 ≤ k < l ≤ h, h ∈ N.

In order to check (12), we employ Helly’s theorem, see [1, Theorem I.4.3], which tells us
that the intersection of a finite family of convex sets in Rd is non-empty if an intersection of any
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d +1 sets in this family is non-empty. Fix 0 ≤ i0 < i1 < · · ·< id ≤ h, and put

λ j :=
2 jτ−i j

∑
d
j=0 2 jτ−i j

, j = 0, . . . ,d.

We aim to show that

−
d

∑
k=0

λkvh,ik ∈
d⋂

j=0

(
L(i j)− vh,i j

)
, h ≥ d +1.

If i0 ≥ 1, it suffices to check that

(15)

∥∥∥∥∥ d

∑
k=0

λkvh,ik − vh,i j

∥∥∥∥∥≤ τ
i j − rτ

h, j = 0, . . . ,d, h ≥ d +1.

By (14),

∥vh,ik − vh,i j∥ ≤ τ
min(ik,i j).

Thus, for every fixed j = 0, . . . ,d,∥∥∥∥∥ d

∑
k=0

λkvh,ik − vh,i j

∥∥∥∥∥≤ j−1

∑
k=0

λk∥vh,ik − vh,i j∥+
d

∑
k= j+1

λk∥vh,ik − vh,i j∥

≤ 1

∑
d
k=0 2kτ−ik

(
j−1

∑
k=0

2k
τ
−ikτ

ik + τ
i j

d

∑
k= j+1

2k
τ
−ik

)

=
1

∑
d
k=0 2kτ−ik

(
2 j −1+ τ

i j
d

∑
k= j+1

2k
τ
−ik

)
,

where the last sum in parentheses is zero if j = d. This estimate demonstrates that (15) is a
consequence of

(16) 2 j + rτ
h

d

∑
k=0

2k
τ
−ik ≤ 1+ τ

i j
j

∑
k=0

2k
τ
−ik , j = 0, . . . ,d, h ≥ d.

It remains to note that we have chosen r ≤ 2−d−1, so that

2 j + rτ
h

d

∑
k=0

2k
τ
−ik ≤ 2 j + r

d

∑
k=0

2k ≤ 2 j +1 ≤ 1+ τ
i j

j

∑
k=0

2k
τ
−ik ,

which implies (16).
Now assume that i0 = 0. Then (15) holds for j = 1, . . . ,d and we need to consider

(17) −
d

∑
k=0

λkvh,ik + vh,0 =
d

∑
k=1

λk(vh,0 − vh,ik) =
d

∑
k=1

λkvik,0.
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Since vik,0 ∈ K for all k ≥ 1 by (13), the sum on the right-hand side belongs to (1−λ0)K. Thus,
the left-hand side of (17) belongs to L(0) = K ⊖Bτhr if

(1−λ0)K +Bτhr ⊂ K,

equivalently,

(18) Br ⊂ λ0τ
−hK.

Since

λ0τ
−hK =

τ−h

∑
d
j=0 2 jτ−i j

K =
1

∑
d
j=0 2 jτh−i j

K ⊃ 2−(d+1)K,

(18) holds for r = ε2−d−1 if K contains Bε .
If h < d, we add fictitious balls B1 to the intersection (10), note that vh,k = 0 for k ≥ h+ 1,

and repeat the arguments. □

Proposition 3.3 is essential to prove the following result, which shows that (Xh)h∈N0 is a
recurrent Harris chain.

Proposition 3.4. Assume that X0 = K for some K ∈ Kd . Let

κ
(0)
B1

:= min{h ∈ N0 : Xh = B1}, κ
(i)
B1

:= min{h > κ
(i−1)
B1

: Xh = B1}, i ∈ N.

Then P{κ
(0)
B1

< ∞}= 1 and (κ
(i)
B1

−κ
(i−1)
B1

)i∈N are independent identically distributed with

E
(

κ
(i)
B1

−κ
(i−1)
B1

)
< ∞, i ∈ N.

Proof. Let
rh := sup{t ≥ 0 : Xh ⊖Bt ̸=∅}, h ∈ N0,

be the radius of the largest ball inscribed in Xh. By Proposition 3.3, rh ∈ [r,1] for all h ∈N0. Fix
δ ∈ (τ,1) and define the events

Ah(δ ) := {Uh(Xh) ∈ Xh ⊖Bδ rh
}= {Bδ rh

⊂ Xh −Uh(Xh)}, h ∈ N0.

Note that, for t ∈ (0,1],

{rh+m+1 ≥ t}= {Xh+m+1 ⊖Bt ̸=∅}
⊃ {(τ−1(Xh+m −Uh+m(Xh+m))∩B1)⊖Bt ̸=∅}∩Ah+m(δ )

⊃ {(τ−1Bδ rh+m
∩B1)⊖Bt ̸=∅}∩Ah+m(δ )

= {τ
−1

δ rh+m ≥ t}∩Ah+m(δ ).

Iterating this inclusion we arrive at

(19) {rh+m+1 ≥ t} ⊃ {rh ≥ t(τ/δ )m+1}∩
m⋂

k=0

Ah+k(δ ), h,m ∈ N0.
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Define m0 := inf{k ∈ N0 : (τ/δ )k+1 ≤ r} and plug t = 1 into (19). Since rh ≥ r, this yields

(20) {Xh+m0+1 = B1}= {rh+m0+1 = 1} ⊃
m0⋂

k=0

Ah+k(δ ), h ∈ N0.

Suppose that

(21) P

{
m0⋂

k=0

Ah+k(δ )
∣∣∣Xh ∈ ·

}
≥ p∗, h ∈ N0,

for a positive constant p∗. Inclusion (20) demonstrates that from any state Xh with probability
at least p∗ the chain (Xh) visits the state B1 after exactly m0 + 1 steps. Dividing the entire
trajectory of (Xh) into consecutive blocks of size m0 + 1, we see that the distribution of κB1

(conditional, given X0 = B1) is stochastically dominated by the product of the constant (m0+1)
and a geometrically distributed random variable with success probability p∗.

It remains to confirm (21). We have

(22) P

{
m0⋂

k=0

Ah+k(δ )
∣∣∣Xh ∈ ·

}
=

m0

∏
k=0

P
{

Ah+k(δ )
∣∣∩k−1

j=0 Ah+ j(δ ),Xh ∈ ·
}
.

Let σh be the σ -algebra generated by {U0,U1, . . . ,Uh−1}, h ∈N. By the construction, Xh is σh-
measurable and Ah(δ ) belongs to σh+1. Therefore, ∩k−1

j=0Ah+ j(δ )∩{Xh ∈ ·} is σh+k-measurable.
Let A be an arbitrary event from σh+k. By the definition of rh+k, there exists a σh+k-

measurable point ch+k such that B(1−δ )rh+k
(ch+k) ⊂ Xh+k ⊖Bδ rh+k

. Since Uh+k is independent
of σh+k and (Xh+k,rh+k,ch+k) is σh+k-measurable,

P
{

Ah+k(δ ) |A
}
= P

{
Ah+k(δ ) |A

}
= P

{
Uh+k(Xh+k) ∈ Xh+k ⊖Bδ rh+k

|A
}

≥ P
{
Uh+k(Xh+k) ∈ B(1−δ )rh+k

(ch+k) |A
}

=
1

P{A}
E

(
E

(
λ
(
B(1−δ )rh+k

(ch+k)
)

λ (Xh+k)
1A

∣∣∣σh+k

))

≥ 1
P{A}

E

(
E

(
λ
(
B(1−δ )r

)
λ (B1)

1A

∣∣∣σh+k

))

=
λ (B(1−δ )r)

λ (B1)
=
(
(1−δ )r

)d
> 0.

This bound implies (21) in view of (22). □

Proof of Theorem 2.2. The result follows from Theorem 6.8.8 in [5] in conjunction with Propo-
sition 3.4. Note that the chain (Xh)h∈N0 is aperiodic by (8). The limit distribution is given
(implicitly) by

P{J∞ ∈ ·}= 1

E
(
κ
(1)
B1

−κ
(0)
B1

)E
(

∑
h≥0

1{Xh∈·,κ
(0)
B1

≤h<κ
(1)
B1

}

)
.
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The fact that J∞ is a finite intersection of balls with radii {1,τ−1,τ−2, . . .} with probability one
follows from (10) and P

{
κ
(1)
B1

−κ
(0)
B1

< ∞
}
= 1. □

4. THE LENGTH OF THE LEFTMOST PATH

Recall that the left boundary of a vp tree VP(x1,x2, . . .) is the unique path which starts at the
root and on each step follows the left subtree. Also recall the notation (xlh,rxlh

) for the vertex of
depth h ∈ {0,1,2, . . .} and its threshold in this path and (Ih)h∈N0 for the sequence defined in (4).

We are interested in the number Ln of edges in the leftmost path of VP(U1,U2, . . . ,Un) with
exponential threshold function (1). Let l1− l0 be the number of trials (insertions of new vertices)
until a left child is attached to the root. Obviously, given I1, l1 − l0 has a geometric law on N
with success probability λ (I1)/λ (K). Similarly, given (Ih)h=0,...,k, lk− lk−1 has a geometric law
on N with success probability λ (Ik)/λ (K), and l1 − l0, l2 − l1, . . . , lk − lk−1 are conditionally
independent. According to Proposition 2.1 and the discussion afterwards, the distribution of the
sequence (lk − lk−1)k∈N is the same as that of the sequence (Gk)k∈N comprised of conditionally
independent, given (J̃h)h∈N0 , random variables such that

P{Gk = j | J̃0, . . . , J̃k}=
λ (J̃k)

λ (K)

(
1− λ (J̃k)

λ (K)

) j−1

, j ∈ N, k ∈ N.

Put S0 := 0 and Sk := G1 +G2 + · · ·+Gk, k ∈ N. Notice that the sequence (1+ Sk)k∈N0 is
distributed as the sequence of time epochs when new vertices are attached to the leftmost path.
Thus, see also Eq. (24) in [4],

(23) Ln
d
= max{k ∈ N0 : 1+Sk ≤ n}, n ∈ N.

To derive a limit theorem for Ln we start with a couple of lemmas.

Lemma 4.1. For every fixed l ∈ N0, we have

τ
−n
(

J̃n, J̃n−1, . . . , J̃n−l

)
d−→ (J(0)∞ ,J(1)∞ , . . . ,J(l)∞ ) as n → ∞.

The limit sequence (J(h)∞ )h∈N0 is defined as follows: (τhJ(h)∞ )h∈N0 is a stationary sequence of
consecutive values of a Markov chain (7) which starts at the stationary distribution J∞ defined
in Theorem 2.2.

Proof. Follows immediately from Theorem 2.2. □

It is known that the volume mapping λ : Kd 7→ [0,∞) is continuous with respect to the Haus-
dorff metric, see Theorem 1.8.20 in [12]. Therefore, for every fixed l ∈ N0,
(24)

τ
−dn

(
λ (J̃n)

λ (K)
,
λ (J̃n−1)

λ (K)
, . . . ,

λ (J̃n−l)

λ (K)

)
d−→

(
λ (J(0)∞ )

λ (K)
,
λ (J(1)∞ )

λ (K)
, . . . ,

λ (J(l)∞ )

λ (K)

)
as n → ∞.
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Given, (J(h)∞ )h∈N0 , let (El)l∈N0 be a sequence of conditionally independent random variables
with the exponential distributions

P{El ≥ t |(J(h)∞ )h≥0}= exp

(
−t

λ (J(l)∞ )

λ (K)

)
, t ≥ 0, l ∈ N0.

Lemma 4.2. The random series S∞ := ∑
∞
l=0 El converges a.s. and in mean.

Proof. The claims follow from

∞

∑
l=0

E(El) =
∞

∑
l=0

E(E(El|(J(h)∞ )h≥0)) = λ (K)
∞

∑
l=0

E

(
1

λ (J(l)∞ )

)

= λ (K)
∞

∑
l=0

τ
ldE

(
1

λ (τ lJ(l)∞ )

)
= λ (K)E

(
1

λ (J∞)

)
1

1− τd < ∞,

where we have used stationarity of (τhJ(h)∞ )h∈N0 . The fact that E
(

1
λ (J∞)

)
< ∞ is a consequence

of Proposition 3.3 which implies that λ (J∞) is bounded away from zero. □

Lemma 4.3. As n → ∞, it holds

(25) τ
dnSn

d−→
∞

∑
l=0

El = S∞.

Proof. According to Proposition 3.3, there exist 0 < c1 < c2 < ∞ such that

(26) P

{
c1τ

dh ≤ λ (J̃h)

λ (K)
≤ c2τ

dh,h ∈ N0

}
= 1.

Put Zn(t) := E
(

eitτdnSn | J̃0, . . . , J̃n

)
. It suffices to show that, for every fixed t ∈ R,

(27) Zn(t)
d−→

∞

∏
h=0

1

1−λ (K)it/λ (J(h)∞ )
as n → ∞.

The convergence (27) yields (25) by the Lebesgue dominated convergence theorem.
Let log denote the principal branch of the complex logarithm. For fixed t ∈R and using (26),

we obtain

− logZn(t) =
n

∑
h=1

log
(

1− λ (K)

λ (J̃h)
(1− e−itτnd

)

)
=

n

∑
h=1

log
(

1− λ (K)

λ (J̃h)
(itτnd +O(τ2nd))

)
=

n

∑
h=1

log
(

1− λ (K)

λ (J̃h)
itτnd

)
+o(1),
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where o(1) is a non-random sequence which converges to zero as n → ∞. Further,
n

∑
h=1

log
(

1− λ (K)

λ (J̃h)
itτnd

)
=

n−1

∑
h=0

log
(

1− λ (K)

τ−ndλ (J̃n−h)
it
)

=

(
M

∑
h=0

+
n−1

∑
h=M+1

)
log
(

1− λ (K)

τ−ndλ (J̃n−h)
it
)
=: An,M(t)+Bn,M(t).

By Lemma 4.1 we have

An,M(t) d−→
M

∑
h=0

log
(

1−λ (K)it/λ (J(h)∞ )
)
, n → ∞,

for every fixed M ∈N. As M → ∞, e−An,M(t) converges to the right-hand side of (27). According
to Theorem 3.2 in [3] it remains to check that, for every fixed ε > 0,

(28) lim
M→∞

limsup
n→∞

P
{
|Bn,M(t)| ≥ ε | J̃0, . . . , J̃n}= 0 a.s.

Using (26) we infer, for some C > 0,

|Bn,M(t)| ≤
n−1

∑
h=M+1

∣∣∣∣log
(

1− λ (K)

τ−ndλ (J̃n−h)
it
)∣∣∣∣≤C|t|

n−1

∑
h=M+1

λ (K)

τ−ndλ (J̃n−h)

(26)
≤ Cc−1

1 |t|
n−1

∑
h=M+1

τ
hd.

This clearly implies (28) and the proof is complete. □

Combining the above lemmas and the duality relation (23) we arrive at the following result.

Theorem 4.4. Under the same assumptions as in Theorem 2.2, for every fixed x > 0, it holds

lim
n→∞

P
{

L⌊xτ−nd⌋ ≤ n+ s
}
= P

{
S∞ ≥ xτ

sd}= P
{

logS∞ − logx
d logτ

≤ s
}
, s ∈ Z,

where S∞ is defined in Lemma 4.2.

Proof. Fix s ∈ Z, x > 0 and write

P
{

L⌊xτ−nd⌋ > n+ s
}
= P

{
1+Sn+s ≤ ⌊xτ

−nd⌋
}
= P

{
τ
(n+s)d + τ

(n+s)dSn+s ≤ ⌊xτ
−nd⌋τ

(n+s)d}.
It is easy to check that the distribution of S∞ is continuous. Thus, letting n → ∞ yields that the
right-hand side converges to P{S∞ ≤ xτsd}= P{S∞ < xτsd} by Lemma 4.3. □

Corollary 4.5. The following weak laws of large numbers hold
logSn

n
P−→ d log(1/τ) as n → ∞,

and

(29)
Ln

logn
P−→ 1

d log(1/τ)
as n → ∞.
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Remark 4.6. Let Hn be the height of VP(U1,U2, . . . ,Un) which is the length of the longest path
from the root to a leaf. Since Ln ≤ Hn, Theorem 4.4 implies

lim
n→∞

P
{

Hn ≥
(

1
d log(1/τ)

− ε

)
logn

}
= 1,

for every fixed ε > 0. We conjecture that

(30)
Hn

logn
P−→ H∞, n → ∞,

for some finite deterministic constant H∞ ≥ 1
d log(1/τ) .
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